A single-cylinder, single-acting, 4 stroke engine of 0.15 m bore develops an indicated power of 4 kW when running at 216 rpm. Calculate the area of the indicator diagram that would be obtained with an indicator having a spring constant of 25 × 106 N/m3. The length of the indicator diagram is 0.1 times the length of the stroke of the engine.

Price:
$1.59

Nuclear Physics

A six-cylinder, 4-stroke gasoline engine is run at a speed of 2520 RPM. The area of the indicator card of one cylinder is 2.45 × 103 mm2 and its length is 58.5 mm. The spring constant is 20 × 106 N/m3. The bore of the cylinders is 140 mm and the piston stroke is 150 mm. Determine the indicated power, assuming that each cylinder contributes an equal power

Price:
$1.59

Nuclear Physics

A steam turbine drives a ship’s propeller through an 8: 1 reduction gear. The average resisting torque imposed by the water on the propeller is 750 × 103 mN and the shaft power delivered by the turbine to the reduction gear is 15 MW. The turbine speed is 1450 rpm. (a) Determine the torque developed by the turbine, (b) The power delivered to the propeller shaft, (c) The net rate of working of the reduction gear?

Price:
$1.59

Nuclear Physics

A system of volume V contains a mass m of gas at pressure p and temperature T. The macroscopic properties of the system obey the following relationship: (P+a/V^2 ) (V - b) = mRT

Price:
$1.59

Nuclear Physics

A milk chilling unit can remove heat from the milk at the rate of 41.87 MJ/h. Heat leaks into the milk from the surroundings at an average rate of 4.187 MJ/h. Find the time required for cooling a batch of 500 kg of milk from 45°C to 5°C. Take the cp of milk to be 4.18 kJ/ kg K?

Price:
$1.59

Nuclear Physics

A slow chemical reaction takes place in a fluid at the constant pressure of 0.1 MPa. The fluid is surrounded by a perfect heat insulator during the reaction which begins at state 1 and ends at state 2. The insulation is then removed and 105 kJ of heat flow to the surroundings as the fluid goes to state 3. The following data are observed for the fluid at states 1, 2 and 3. State v (m3) t (°C) 1 0.003 20 2 0.3 370 3 0.06 20 For the fluid system, calculate E2 and E3, if E1 = 0

Price:
$1.59

Nuclear Physics

A mixture of gases expands at constant pressure from 1 MPa, 0.03 m3 to 0.06 m3 with 84 kJ positive heat transfer. There is no work other than that done on a piston. Find DE for the gaseous mixture. The same mixture expands through the same state path while a stirring device does 21 kJ of work on the system. Find Δ E, W, and Q for the process.

Price:
$1.59

Nuclear Physics

A system composed of 2 kg of the above fluid expands in a frictionless piston and cylinder machine from an initial state of 1 MPa, 100°C to a final temperature of 30°C. If there is no heat transfer, find the net work for the process.